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Preface 

This report is the sixth concerned with research accomplished in 

connection with Navy Contract Nonr-433(00), between jJunham Laboratory, 

Yale University, and the Office of Naval Research, Department of the 

Navy-. In this report is given a discussion of the design of a class 

of networks that can be used for producing a known constant time delay 

with an electronic analog computer. A differential-difference aqua- 

tion of the sort considered in Report No. 5 requires such a delay 

network if it is to be studied simply on a computer. It was in 

connection with the investigation of this equation that a study of 

delay networks was made. 

The research was carried on and the report written by the 

undersigned* 

" 

W. J, Cunningham 

New Haven, July 1954 
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Abstract 

i   
In maiding use of an analog computer to study differential- 

difference equations in which a constant time delay occurs, it is 

necessary to have *Tma device to introduce a known constant delay into 

the system. Usually it is convenient to do this with a network 

synthesized from the elements of the computer. A perfect delay network 

is an all-pass network in which phase shift varies linearly with 

frequency. One class of networks that approaches this ideal is studied 

by considering the roots of their transfer functions. Networks having 

one, two, three, and four pairs of roots are investigated in detail, 

and numerical data about tham are nyenented in tabular form* These 

tables allow selection of a particular network appropriate to tha 

problem being ana".yzed. 

saa»»res«s!*4fi.'* 
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I. Need for Delay Networks 

Certain physical systems have within then some process that intro- 

duces a lime delay of constant magnitude, regardless of the operating 

conditions. The differential equations describing such a system 

contain terms in which the constant time delay occurs. If these equa- 

tions are to be studied by means of an electronic analog computer, it 

is nec.apsary to have available some device that will provide the 

delay. This device should produce a constant delay of controllable 

magnitude, and must give no effect other than that of introducing the 

delay. 

There are several ways by which a constant time delay can be 

obtained. For many purposes, however, it is most convenient to 

synthesize from the elements of the analog computer itself a network 

which will produce the delay. This network is required to transit 

the electrical signal representing the solution for the equation being 

studied. Uithin the frequency band containing the signal, the net- 

work should introduce constant known values of boIn time delay and 

attenuation. Such a network is described «.s an all-pas3 network with 

its phase shift varying Linearly with the frequency of an applied 

sinusoidal signal. The linear relation between phase shift and 

frequency should be maintained over the necessary frequency band. 

Time-delay networks of varying complexity can be designed. In 

most applications it is desirable to use as few elements as possible 

in the network, and to obtain as large a value as possible for the 

product of the time delay r and bandwidth (o . One design for a 

time-delay network has appeared recently in the literature. In the 

1. C. D. Morrill, Trans. IRS, EC-3, 45, (June 195^-) 
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following discussion, a somewhat different approach to the problem is 

used, and severa1 networks are analyzed. The number of elements and 

the circuitry needed to synthesize them are shown, and the value of 

I 
product 'JJ^T is obtained. The results! of the analysis are useful 

in selecting a delay network appropriate for a given application. 

! 

II, Analysis of Networks 

11,1 All-pass networks 

The networks considered here are all of one general type. They 

are ail-pass networks, in which the attenuation of a sinusoidal signal 

is independent of frequency, Furthermore, the networks are adjusted 

so that this attenuation is zero, or that the magnitude of the signal 

is unchanged by the network. The curve relating phase shift to fre- 

quency is essentially linear from zero freqxiency to some maximum 

angular frequency w. , For frequencies higher than this maximum, the 

phase curve departs rapidly from linearity4 The time delay x is the 

negative of the slope of the phase curve 

T • -d«/dw (1) 

where 9 is the total phase shift. Tha delay is constant so long 

an the phase curve is linear. 

The, transfer function H for such a network is 

H = E2(p)/E1(p) (2) 

where E_ and E, are the complex signals at the output and input 

terminals, respectively, and p is the complex frequency variable. 

In order to fit the requirements listed previously, the magnitude of 

H should be unity and its angle should vary linearly with real fre- 

quency. The variation of H with p can be studied most easily 

through a consideration of the roots of the polynomials in p that 
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form the numerator and denominetor of the fraction representing H. 

2 
It nae been Bhown that these roots must fit a specified pattern. 

They must occur either as real quantities or as complex conjugate 

pairs. Roots of the denominator, or polss, uust occur in the left 

fcalf of the complex-frequency plar.c, and roots of the numerator, or 

zeros, must occur in the right half-plane. Each pole must have a 

matching zero with its real part of opposite algebraic sign. A typical 

situation is shown in Fig. 1, where six roots appear. The design 

problem for the deity network is essentially that of determining the 

optimum location for these roots. 

• 

5 

I 

II.2 Example with six roots 

The analysis of the network with the six roots of Fig. 1 is used 

as an example. The transfer function for this netvrork is 

H = Qf> • (a • .1*03 & - (a - ,1,b)2& -T...<Q (i) 
[p <• (a - ijbg fp + (a * jbllfp * cj • K3) 

If a real driving frequency is used, p * jco, and the angle of H is 

© • tan• (b - co)/a + tan~-(~b - oi)/a + tan"" (-w/c) 

- tan" (-b + w)/a - tan (b + cj)/a - taa (o>/c) .       (4) 

It is convenient to normalize some of the quantities by using the 

definitions 

x a b/a,    y 5 c/a,    Q s cu/a (5) 

so that Eq. (4) becomes 

6 - 2|tan_1(x - £5) - tan^Cx * G) - tan'^a/y)],       (6) 

The procedure now is to take successive derivatives of 8 with 

respect to the frequency variable, Q, The first derivative is 

2. H. W. Bode, Network Analysis and Feedback Amplifier Design, 
(D. Van Nostrand, New York, 1945), p. 239 

i 

L 
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F*g. 1    Location of poles and zeros for 6-root network 
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proportional to the time delay T. At zero frequency the delay is 

defined as T » the initial time delay. Derivative a of eveji order 
o' 

all vanish at zero frequency because the phase curve is an odd function 

of frequency. The parameters x and y are chosen so as to mice 

the derivatives of third and fifth order vanish at zero frequency. 

This insures that the phase curve will be as nearly linear as possible 

near zero frequency, and should provide a valid criterion £or  the 

design of the network. 

The successive derivative;* of Eq, (6) are as follows. 

d9 
da 

-X—i . • 1    +      y    1 
Li f (x - o)2    l + (x • a)     -j  + o2J 

da2      T^(x-n)2J    [i+(x*a?P    i/^n^J 

<£§ B J 1 - 3fr - of   +  i-?(i* of, + ^ - ff2) 
dQ-3      j [i + (x - flrj'     (l + (x • ary    hr + p/ P 

(7) 

(8) 

(9) 

d*e = US 
»2-i (x - 0)11 - (x - Q) J      (x • Q)U - (x • Q)~3 

an4      L L1 * (x " Q) j j_i + (x + arj 

- ff (y2 - o2)1 (10) 

4 - -** 
dCp 

1- 10(x- fl)2+5(x- Q)4 + 1- 10(x • Q)2+5(x + Q)4 

u  [l + (x = O}2]5 [l • (x + n)2_f 

4     ,-2-2 

It is evident from Eqs. (8) and (10) that at 0 » 0 both D G • 0 

and D49 - 0, where D^» is defined as dn6/dftn evaluated at Q = 0. 

The odd-order derivatives evaluated at 0 • 0 become 

\  
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D& - -2> 
1 • xf 

• 1 

D'e = -48 2(1 - lCbc2 • 5x4)  +   1 

The requirement that   Ire « 0   and   D-,6 • 0   gives 

y3 - -(1 + x2)3/2(l - 3x2) 

and 

y5 = -(1 + x2)5/2(l - 10x2 + 5x4) , 

If y ie eliminated from those tv.'c equations, the result is 

(1- lQx2 • 5x4)3 -4(1- 3x2)5. 

6. 

(12) 

(13) 

(14) 

(15) 

(16) 

a?) 

The value of x satisfying this equation is x = 0,953, and when 

this value is used in either of Eqs. (15) or (lo), the corresponding 

value for y is y * 1,26. These numerical values serve to give the 

optimum locations for the roots of the network* 

The initial time delay is, from Eq. (i), 

T - -0/a)29. (18) 
o 

With the numerical val\xes of parameters x arid y found above, the 

time delay is found from Eq. (12) as 

T «3.68/a. (19) 

In order to determine the frequency band over which the delay 

is essentially constant, it is necessary to plot a. curve of Q   as a 

function of £. Equation (6), with the numerical values of x and y 

inserted, is 

6 - 2(tan"1(,953 - 0) - tan"1(.953 + 0) - tan**1(£V'l.26)],    (2CX 

This equation i« plotted in Fig. 2, Also plotted there is the straight 

line having the slope found from Eq. (12), The curve cf Eq. (20) 
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departs from the straight line as & becomes larger. Purely arbitrar- 

ily, a difference of five percent might be chosen as an allowable 

departure. This departure occurs for Q • 1.3• Thu?, the upper 

frequency limit, defined in this way, is a> • 1.3 a, and the product 

a) x  is a sort of figure of merit, u T » 4*8«. An alternate form mo ° *  m o 

for the figure of merit is the value of che phase shift when the 

departure from linearity is the arbitrary five percent, Kare, this is 

8 • 277 degrees, which is merely u> T  oxpressed in degrees. It is 
DI* mo 

the value 9 would have at u> if the phase curve were truly linear. 

The actual value of B    is five percent less than this 9^. 

111,3 Other networks 

All-pass time-delaj'' networks, based on this type of design, 

obviously can be created with any integral number of pairs of roots. 

The example just studied contains three pairs, "..'here the number of 

pairs is odd, one pair must be located on the real axis of the p-plane. 

Where the number of riairs is even, all of them will bo located off the 

axis. The complexity of the physical system needed to produce the 

required transfer function will increase fairly rapidly as the number 

of roots is increased. 

In Tables I-IV are given the results of the analysis of networks 

of this sort having one, two, three, and four pairs of roots. By the 

time four pairs of roots are used, the numerical work needed to find 

the optimum parameters becomes quite tedious. The performance of this 

8-root network is adequate to satisfy many applications, and more 

complicated networks arc not considered here. 

Pha3e curves for each of the networks are plotted in Fig, 3o 
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Transfer function: H = - )ft ** H 

9. 

Table Is P-root Network 

Pairs of roots! OM 

Location: 

-*- 
(-a • JO) (a + 10) 

Design criteria: D§ =0 

Circuit parameters: only a is specified 

Initial deiry: T = 2/a c 

Maximum frequency*, w " 0.4a 

Figure of merit: u T • 0.8, G^ « 46 degrees 

Circuit: 

i"^\ 
o , 1 

!     v.V 
1   r~> 

— 1 ^ 

zO> 
Lf y \L/~ 11 / 

I X 
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Table II, y-root Network 

Pairs cf roots: two 

Location: 

(-a+jb) x 

(-a-Jb) x 

O (a+jb) 

o (a-Jb) 

Design criteria: D^S • Er9 • £"*© • 0 

for D^e - 0: (1 - 3x2) - 0 

Circuit parameters: x - b/a • 0.577 

Initial delay: T • 3/a 
o 

Maximum frequency: w e 0,9a 

Figure of merit: w^ = 2.7, ^m = 155 degrees 

Circuit: 

—u&y 
--(2a 
V 

\ 
a"+b 

\ 

—1 1 

i 
1 

Transfer function: H • - 
Cp* - 2ap *  (a2 + b2)3 

Cp2 + ?.a? + (a2 + b2)j 



Table III, 6-root Network 

Pairs of roots: three 

Location: 

(-a+jb) x 

(-o+JO) _ 

(-a-jb) * 

 r 

o (a+Jb) 

-& 
(c+jO) 

o(a-jb) 

i 
: 
I I 

i 

ii. 

' 

• I 

Design criteria:    D u •> Ir6 • D^TJ «• DO - D 9 « 0 

2^ 
forD^e-O:    ^ " fr ) ^.o 

for D56,0:    Ml^L^L^l + 4.0 
(1 + x2)5 y5 

Circuit parameters: x = b/a = 0.953 

y • c/a • 1,26 

Initial delay: x = 3.68/a 
o 

Maximum frequancy: w = 1,3 a 

Figure of merit: u. -i = 4,3, B   • 277 cagrees 
to o    *  m 

Circuit: The circuit of Table I, designed with parameter c, followed 

by the circuit of Table II, designed with parameters a and b. 

Transfer function: H 
[p2-2ap+ (a2 + b2)]Cp- c] 

[p2 + 2ap + (a2 + b2)] [p + c] 



Table IV. 8-root Network 

Pairs of roots: four 

Location: 

(-c+jd) * 

(-a+jb) x 

(-c-jd) * 

O (c+Jd) 

O (a+jb) 

O(c-jd) 

l-» „  _ » _ „ *   i    .   .   .• T\^^\ rvj/v rv/i/N ^W »"\     _     T>OA *~ f — — O,. -. 
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1       1 

i I 
I 
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I 

for D^e - 0: 

for D-^e • 0: 

for D7e 

(1 + x -)'  y^Ci + z"r 

1 - 10x2 *  5x^ f 1 - 10z~ • 5z
4 . 0 

(1 + x2)5 "    y5(I + Z
2)5 

1 - 21x2 • 35x4 - 7x6  i - 21z2 » 35z4 - 7a° 

(1 + x2)7 i /-i ,2N7 

Circuit parameters: x = b/a = 0.34 

y • c/a •= 0*71 

z - d/c = 1.5 

Initial delay: T = 5»2S/a o 

Maximum frequency:    w    • l»55a 

Figure of merit:    <D_T    = 8,2.    6    = 470 iegrees m o    '  m       ° 

Circuit: The circuit of Table II, designed with parameters a and b, 

followed by a second circuit of Table II, designed v/ith 

parameters c and d, 

r  *•  • •    H . Cp2 - 2ap • (a2 » b2)]fp2 - 2cp + '-?  • d2)] Transfer function: H •» p*~ —*• ~——~J-^~ J;— 5— 
U>   + 2ap + (a   + b2)*j[p2 + 2cp + (c2 + d2)] 

iBEE&SSStSri 
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Fig. -j    Phase shift of four types of networks 
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III. Synthesis of Networks 

The elements of an electronic analog computer must now be used to 

synthesize a network having its roots determined by the foregoing 

analysis. Since the computing amplifiers are unilateral circuit 

elements, the synthesis is not difficult to carry out. One circuit is 

sufficient to give a single pair of roots on the real axis, A second 

circuit will give two pairs of roons symmetrically located off the 

axes. These two circuits can then be combined to give any arrangement 

of roots that may bo desired, 

111,1 One pair of roots 

The transfer function fu*- the time=de"iav network with a single 

-~,?~ 0£ roots Oii the real axis is £X»X4 

H   {»-»? (21) 

which can be written as 

H - 1 - 2a/(p + a) . (22) 

The term, -l/(p + a), can be obtained by applying resistive feed- 

back around an integrator. If this tare, is adjusted in magnitude by 

the factor 2a and acidea to unity, the result is the desired transfer 

function. The corresponding circuit is shown in Table I, The circuit 

yields a transfer function which is the same as Eq, (21), but with a 

negative algebraic sign. 

III.2 Two pairs of roots 

The transfer function for the network with two pairs of roots is 

H ,1P- »- .ityp- 
aU^ H  (p + a * jb)(p + a - jb) 

p2 - 2ap • (a2 + b2) 

p2 + 2ap + (a2 • b2) 
(23) 
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which can be written as 

K - 1 - 4ap/(p2 + 2ap + (a2 + b2)] . 

15. 

(2/,) 

p + 2ap + (a' + b )J , can be obtained by applying 

both resistive feedback and feedback with one integration around ?.n 

integrator. If this term is adjusted by the factor 4a and added to 

unity, the result is the desired transfer function. The corresponding 

circuit is shown in Table II, Thi3 circuit yields a transfer function 

which is the same as Eq. (23), but with a negative algebraic sign. 

III.3 Several pairs of roots 

When several pairs of roots are necessary, it seems simplest to 

combine the circuits of Tables I and II in appropriate- fashicn. Thus, 

the circuits of Tables I arid II ara combined in Table IIIj two circuits 

or Table II are combined in Table IV. 

T+. is possible, of course, to synthesize other arrangements of 

circuit elements that will give the transfer functions vrith several 

paira of roots. The a3.temate configurations that have been explored 

require at least as many circuit elements as the combinations suggested 

in Tables III and IV, and appear to be more difficult to adjust, 

where a complicated circuit is obtained as the sum of several simpler 

circuits, each circuit can be tested alone to make sure it is operating 

correctly. Alternate forms of the complicated circuit may not be so 

easily broken down for test purposes. 

IV; Practical Considerations 

The primary consideration in choosing the appropriate delay net- 

work for a particular application is the total phase shift that must 

be obtained with a curve essentially linear1. This is the form of the 

.'--wsjaiU, 
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figure of merit given as 9  in the tables,, A network with a larger w        m 

number of roots gives a larger value for 8 • Thus, if a larL;e vaius 

of 6m is needed for a certain probler, a relatively complicated 

! 
I   5 

Two identical networks might be used in tandem to give double 

m 

delay network is required. 

the delay of either alonej In Fig. 4 is shown the phase curve Tor a 

pair of identical 4-root networks used in this way. Also shown is 

the curve for a single 3-root network. The initial delay for the pair 

of 4-root networks is twice that for one alone, and is larger than 

that for the 8-root network. However, the departure fron linearity is 

greater than for the single 8-root network. The figure of merit for 

the pair of 4-root networks is twice 2,7, or 5,4, whilcj that, for the 

single 3-root network is 8,2, This example indicates that it is 

advantageous to use a single network of sufficient complexity to give 

the necessary total phase shift* 

In setting up the ocsaponents to form a delay circuit, it is sotna- 

times helpful to test isolated portions of the complete system. The 

circuit giving four roots can be profitably broken down in this way* 

If the transmission path straight from the input terminal of the net- 

work to one input terminal of the summing amplifier is removed, the 

transfer function of the remaining elements is 

G = jWJja2 • b" - w2) • j2aw], (25) 

It is not difficult to s^how that its magnitude is G - 2 for the 

2    2   2 
driving frequency w <• (a + b ), Similarly its magnitude is 

JGI- 23^2 for the driving frequencies u2 - (3a2 + b2) 4 2a(2a2 + b2)1^2, 

This portion of the network can easily be checked to make sure that |G 

has the proper value at the frequsneies given. 
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Fig. 4    Phase shift of tvo 4-root networks and of one o-r-oot netv.'ork 
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The magnitude of the transfer function for any of the complete 

delay networks is, of course, unity at any driving frequency, and this 

fact should be checked. 

V. Example of Application 

A nonlinear differential-difference equation requiring a time 

delay is 

dX(t)/dt - A X(t) - B X(t) X(t - T) (26) 

wh«re X is the dependent variable, t is time, the independent 

variable, A and B are positive real constants, and i is a. corr- 

3 
stant time delay. This equation has been studied on an analog 

computer, using a 3tep-by-step process of computation. For certain 

values of product AT, the solution for tho equation is a periodic 

oscillation with a waveform that is far from sinusoidal. The period 

of the oscillation is at least four, or more, times tho delay time x. 

Thus, a delay of somewhat less than 90 degrees is needed at the funda- 

mental frequency. However, many harmonic components are present in 

the nonsinusoidal oscillation. The phase shift for a harmonic with 

constant time delay is the prcduct of the order of the- harmonic and 

the phase shift of the fundamental. Since it appears that harmonics of 

at least i,hs fifth ord^r arc important, a total phase sl-iift of at 

least /{00 degrees is required. The use of an 8-root delay circuit is 

indicated, 

A convenient value for the time delay with the computer used here 

is x = 2 seconds. Then, using the dasign equations of Table IV, the 

necessary parameters are 

3. W, J. Cunningham, A Nonlinear Differential-Difference Equation of 
Growth, Contract wonr-433(00), Yale University, May 195'*,, Upper- 
case symbols are used in writing TCn. (?6) to avoid confusion v.*ith 
symbols used previwsly. 

; 



• 

—      "    r 

a • 5,2#A    • 2.64 sec 

b = xa = .34 x 2.64 - 0.395 8Q0 

19. 
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e = y& « .71 * 2.64 » 1.87 sec 

d « 350 - 1,5 * 1.87 * 2.81 soc"X 

2   2        -2 
a!6 * b* - 7.72 sec 

c^ + d* 
-2 

The configuration of elements needed to synthesize the delay circuit 

is shown in Fig, 5, The complete setup of the cccrputer for studying 

Eq. (26) is shown in Fig, 6, and incorporates the delay circuit of 

A family of curves obtained with this system is shown in Fig. 7. 

The only initial condition for these curveB is that X * 0/lC ct 

t a 0, where g • A/B. These curves agree well with those of Fig. 19 

of footnote reference 3, These latter curves were plotted with points 

obtained from a step-by-step integration, Tho curves of Fig. 7 aro 

plotted directly and continuously by the computer. The minimum value 

of product Ax needed to give a periodic solution is approximately 

AT = 1.S5. This is somewhat larger than that estimated in the reference, 

The solution just overshoots its final value, so oscillation begins, 

if AT = 0,48, which is close to the previous estimate. 

In Fig, 8 is shown the solution cor X(t) with AT «• 1.8, and 

also this same function as retarded by the delay network. Except for 

the initial transient, the delayed curve is quite accurately the original 

curve, merely shifted the proper amount on the time scale. If the 

product AT is much larger than about Ac • 2, the oscillation 

becomes even more nonsinusoldal. The higher harmonics then e;:ceed 

tho maid mum frequency for the delay network, and the delayed signal 

begins to differ in shape from the signal with no delay. 
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Fig. 6 Computer uelup for Eq, (26) 
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24. 

The initial transient on the delayed curve of Fig. 8 comes about 

because no initial conditions were applied to the integrators of the 

delay circuit. If enough information is known about the solution of 

the equation for the interval -T <, t K 0, presumably initial condi- 

tions needed in the delay circuit could be predicted and inserted in 

such a way as to avoid this initial transient. In practice, hoi/ever, 

problems involving differential-difference equations of this sort appear 

to have the inherent difficulty of not furnishing sufficient informa- 

tion to start the solution properly. As has been observed previously, 

this kijnd of equation is equivalent to a differential equation of 

infinite order, so that an infinity of initial conditions are needed. 

With a finite delay network, ouch as those considered here, only a 

finite number of conditions can be used. Evon this finite number "ill 

not be known in the general problem. 

The damping effective in the delay circuit is sufficient so that 

if there is a transient set up within it, decay is fairly complete 

within the interval of one delay time, T. 

Initial conditions needed to eliminate the initial trar-" , .t i.i 

th? -3-root delay network can be found as follows. The network with 

its four integrators is shown in Fig. 9. Initial conditions applied to 

the integrators are identified as IC ; these are the negatives of 

the signals which must exist at the output terminals of the integrators 

at zerc time. Constant multiplying factors for certain of the computing 

amplifiers are identified as N . Signals at various points in the 
n 

systems are called e, = R- (t)» 

Through a consideration of the transfer functions for the parts 

of the network, the following equations can be written. 

]£Z*S22SZSSiE£ZZ£*S ±2&fXm&£*££Mk 
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j 

f          (V"N )ap "j j 
IC-,   - -e,(0) -j-s- —= J-   6,(1)1 1 2 [/ + 2ap + (a2 + b2) J   X      j tO 

N282(0)      ("       -(Wg/N^a 

IC, 

L' 
»-e,(0) =|-v 

-(Wg/N^a 1 

? • 2ap + (a2 + b2)    ^ 
t) 

2ap + U 

(V^3)cp 

jt-0 

(27) 

(28) 

Lp2 • 2cp + (c2 + df) 

r. JLZ-2&L±S§L+JL1 

IC, 

L_ p
2 + 2ap + (a2 + b2)J~] 

= VJ^ „ [_ -(^VN^C 1 
p     p2 + 2cp + (c + d") 

(t) (29) 
t=0 

^p + iicp + (u • u / j 

, p2 - 2ap + (a" • b2)   ,fcJ 
, 2v ) wl (30) 

L P + 2ap - {-:• *  b ,J '  |tO 

Enough information is known about Eq, (26) to determine those 

initial conditioas. Near ;L * 0, approximately X = X exp(At), 

where X • X^ at t • 0, For the curves c:f Fig. 8, A - 0,9 and 

X « 3/10, Thu», for the setup of Figs. 5 and 6, and the cuwres of 

Fig, 8, numerical data needed for Eqs, (27"30) are as follows: 

e-^t) « (fi/l0)eap(0.9t) a - 2*64 Nx ~ /, 

b - 0,895 N2 = 10 

c « 1.87 N- » 10 

d - 2.81 N.   - 10 
4 

When these data are inserted into the equations and '.ho necessary 

operations carried out, the initial conditions for the. integrators 

are found as 

IC-L - 0.177 (3/10) 

IC2 - -1.97 (P/10) 

IC3 - -0.0123 (6/10) 

IC. « 0.137 (P/10) 

When these conditions are applied, the delayed solution starts off 

smoothly* without an initial transient such as that of Pig. 8. 

—'"•••' —-—'-• 



! H Information Agency 
vntmrnm ££?"*? 'Hf1*7' 7£ "*** ^^ it '? "turn this copy WHEN IT HAS 
VKL'SZSSZ *"* " ^ "" ""* "^ 'o "ther renters.  Your mope will be appreciated. 

SERVED 
operation 

lea 

: 

i | 
! 
i       : 

I 

NOTICE:   WHEN GOVERNMENT OR OTHER DRAWINC SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CO<?'rTmN „--,„ , nFFTNr„c,T Y „FT ATFn 
GOVERNMENT PROCUREMENT OPERATION, THE U*

E
£•FR^FN£ TH^^YI^^C 

NO RESPONSIBILITY, NOR ANY OBLIGATION WHATS^^R.^rHB FACT THAT T^ 
GOVERNMENT MAY HAVE FORMULATED, FURNISHED? ^ ^{ivwiv QTTDPTivrt TMF 
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DAT^ «OT TftIW BFGABDEn BY 
IMPLICATION OR OTHERWISE AS IN ANY MAILER    rrvvQwr TWF HOTSOBANY OTWFR 
PERSON OR CORPORATION, OR CONVEYING ANY PSS PERMBSS TO^MANUFACTraE 
USE OR SELL ANY PATENTED INVENTION THAT^|f• SfW.M^S^nSrSm^. 

Reproduced     by 

DOCUMENT SERVICE CENTER 
KNOT! BUILDING, DAYT0Ka 2> OHIO 


	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038

